Diagnosis of Niemann-Pick disease type C with 7-ketocholesterol screening followed by NPC1/NPC2 gene mutation confirmation in Chinese patients
نویسندگان
چکیده
BACKGROUND It has been reported that oxidation product of cholesterol, 7-ketocholesterol, increases in plasma of patients with NP-C. Previously, we established a rapid test to determine the plasma 7-ketocholesterol level and found it elevated significantly in patients with acid sphingomyelinase deficient NPD and NP-C disease. METHODS Individuals randomly referred to our outpatient clinics in the past two years for hepatosplenomegaly or isolated splenomegaly, who have been excluded as acid sphingomyelinase deficient NPD or Gaucher disease, and individuals with newborn cholestasis, psychomotor regression/retardation, were screened for plasma 7-ketocholesterol level. Individuals with high 7-ketocholesterol level were then analyzed for NPC1 and NPC2 gene mutation to confirm the accuracy of NP-C diagnosis. RESULTS By screening the plasma 7-ketocholesterol of suspect individuals, 12 out of 302 (4%) had shown remarkable high levels compared with reference. All these twelve individuals were subsequently confirmed to be NP-C by DNA analysis of NPC1 and NPC2 genes, with the early infantile form (n = 7), the late infantile form (n = 1), the juvenile form (n = 1) and the adult form (n = 1). Furthermore, two NP-C patients without observable neuropsychiatric disability were picked up through this procedure. Only one patient had NP-C due to NPC2 gene mutations, with the rest due to NPC1 gene mutations. We found that in NP-C patients AST was usually mildly elevated and ALT was in a normal range when jaundice was not present. In total, 22 mutant alleles were identified in the NPC1 gene, including six novel small deletions/insertions, e.g., c.416_417insC, c.1030delT, c.1800delC, c.2230_2231delGT, c.2302_2303insG, and c.2795dupA; seven novel exonic point mutations, c.1502A>T (p.D501V), c.1553G>A (p.R518Q), c.1832A>G (p.D611G), c.2054T>C (p.I685T), c.2128C>T(p.Q710X), c.2177G>C (p.R726T), c.2366G>A (p.R789H), and one novel intronic mutation c.2912-3C>G. Small deletions/insertions constituted nearly half of the mutant alleles (10/22, 45%), indicating a unique mutation spectrum in this cohort of Chinese NP-C patients. CONCLUSION Our data confirm in a clinical setting that screening plasma 7-ketocholesterol is an efficient and practical diagnostic tool to identify NP-C patients from suspect individuals. Patients without neuropsychological involvement could also be identified by this method therefore allowing an opportunity for earlier treatment.
منابع مشابه
Genetic screening for Niemann–Pick disease type C in adults with neurological and psychiatric symptoms: findings from the ZOOM study
Niemann-Pick disease type C (NP-C) is a rare, autosomal-recessive, progressive neurological disease caused by mutations in either the NPC1 gene (in 95% of cases) or the NPC2 gene. This observational, multicentre genetic screening study evaluated the frequency and phenotypes of NP-C in consecutive adult patients with neurological and psychiatric symptoms. Diagnostic testing for NP-C involved NPC...
متن کاملAberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease
Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...
متن کاملAltered vitamin E status in Niemann-Pick type C disease.
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We exa...
متن کاملDefective endocytic trafficking of NPC1 and NPC2 underlying infantile Niemann-Pick type C disease.
Niemann-Pick type C (NPC) disease is a fatal recessively inherited lysosomal cholesterol-sphingolipidosis. Mutations in the NPC1 gene cause approximately 95% of the cases, the rest being caused by NPC2 mutations. Here the molecular basis of a severe infantile form of the disease was dissected. The level of NPC1 protein in the patient fibroblasts was similar to that in control cells. However, th...
متن کاملCholesterol depletion facilitates ubiquitylation of NPC1 and its association with SKD1/Vps4.
Niemann-Pick disease type C (NPC) is an inherited lipid storage disorder caused by mutations in NPC1 or NPC2. NPC1 is a polytopic glycoprotein that contains a sterol-sensing domain, whereas NPC2 is a soluble protein that contains an MD-2-like lipid-recognition domain. In the current study, we addressed the hypothesis that ubiquitylation of NPC1 might be regulated by cholesterol. We found that d...
متن کامل